
International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 14
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

• Ph.D. Candidate, Dept of ICT Eng, Maleke Ashtar Univ. of Tech., Islamic
Republic of Iran. Email: ezut_sol73@yahoo.com

• Assistant Professor, Maleke Ashtar Univ. of Tech, Islamic Republic of
Iran. Email: abfetanat@gmail.com.

Sequential Intrusion Detection System Using
Distance Learning (Metric Learning) and Genetic

Algorithm
Ezat soleiman, abdelhamid fetanat

Abstract— since current intrusion detection systems are signature based, they still unable to detect new forms of attacks even these
attacks are slightly derived from knowen ones.this paper introduces a new idea of sequential intrusion detection system using genetic
algorithms and metric learning.

Index Terms— genetic algorithm, intrusion detection system, Large margin nearest neighbor, LMNN ,metric learning.

—————————— ——————————

1. INTRODUCTION
He insufficiency of traditional security tools like antivirus
in facing current attacks conducts to the development of
intrusion detection systems (IDS). IDSs search in the net-

work traffic for malicious signature and then send an alarm to
the user. Since current IDSs are signature based they still una-
ble to detect new forms of attacks even if these attacks are
slightly derived from known ones. So, recent researches con-
centrate on developing new techniques, algorithms and IDSs
that use intelligent methods like neural networks, data min-
ing, fuzzy logicm and genetic algorithms.

2. GENETIC ALGORITHM
Genetic algorithm is an evolutionary optimization technique
based on the principles of natural selection and genetics. The
working of genetic algorithm was explained by John Holland
[1]. It has been successfully employed to solve wide range of
complex optimization problems where search space is too
large. GA evolves a population of initial individuals to a
population of high quality individuals, where each individual
represents a solution of the problem to be solved. Each indi-
vidual is called a chromosome, and is composed of a prede-
termined number of genes. The quality of fitness of each
chromosome is measured by a fitness function that is based on
the problem being solved. The algorithm starts with an initial
population of randomly generated individuals. Then the pop-
ulation is evolved for a number of generations while gradually
improving the qualities of the individuals in the sense of in-
creasing the fitness value as the measure of quality. During
each generation, three basic genetic operators are applied to
each individual with certain probabilities, i.e. selection (rank
selection, roulette wheel selection and tournament based selec-
tion), crossover and mutation.

2.1 Parameters in Genetic Algorithm
There are many parameters to consider for the application of
GA. Each of these parameters heavily influences the effective-
ness of the genetic algorithm [2].

The fitness function is one of the most important parameters
in genetic algorithm. To evolve input features and network
structure simultaneously, the fitness, which is based on the
detection accuracy rate, includes a penalty factor for the num-
ber of operative input nodes and a penalty factor for the num-
ber of operative hidden nodes.

3. METRIC LEARNING:

3.1 Introduction
In mathematics, there are multiple feature spaces that are

useful in enormous problems. For example, Euclidian space or
Euclidian distance is the most popular metric that we use in
our real world or Mahalanobis distance that we use to demon-
strate the distance between two places in the city.

In classification and clustering problems, the majority of
methods, assumes the Euclidian feature space to solve their
problems and they evaluate their result in this space. One
question may appear in mind is what is the best feature space
for my problem? In other words, is this distance metric the
best metric for my problem? In the next section we discuss
about it with some example.

3.2 Metric learning with example
Based on figure 1, suppose Ali, Mohammad and Hasan

were Arab and Bryan, David and Michel were American. If we
want to classify them based on Euclidian distance between
their houses, Ali should be American because Ali’s house is
next to Bryan’s house and this scenario is the same with Mo-
hammad-David and Hasan-Michel. So in this classification
problem, Euclidian distance is not useful. Note that Euclidian
distance is meaningful but is not useful.

T

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 15
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Ali Mohammad Hasan

Bryan David Michel
Fig. 1.

Is there any transform so that if we transform their house
location, in transformed space, the Euclidian distance demon-
strates their class?

Suppose we have found a transform and transformed loca-
tions were figure 2.

Ali

Mohammad

Hasan

Bryan

David

Michel

Fig. 2.

In this space, Euclidian distance is useful and it properly
helps us to classify them based on Euclidian distance.
Another example is in intrusion detection systems. Suppose

each connection has two features 1 2(,)x x , for example
(dst_host_srv_serror_rate,src_byte). In figure 3, suppose blue
squares were normal connection and red circles were attack
connections.

Fig. 3.

If the classification method was KNN, this input samples will
produce high error rate because the intra class distances are
high and inter class distances are low. If we find a transform T
so that it reduces the intra class distance and increases the inter
class distance, we can use KNN with low error rate.

T

Fig. 4.

We will use LMNN method for metric learning. This method
has shown its strength in classification problems. In the next
section we will introduce it.

3.3 LMNN:
Large margin nearest neighbor (LMNN) classification is a

statistical machine learning algorithm. It learns a Pseudo metric
designed for k-nearest neighbor classification. The algorithm is
based on semi definite programming, a sub-class of convex op-
timization [3].

The goal of supervised learning (more specifically classifi-
cation) is to learn a decision rule that can categorize data in-
stances into pre-defined classes. The k-nearest neighbor rule
assumes a training data set of labeled instances (i.e. the classes
are known). It classifies a new data instance with the class ob-
tained from the majority vote of the k closest (labeled) training
instances. Closeness is measured with a pre-defined metric.
Large Margin Nearest Neighbors is an algorithm that learns
this global (pseudo-)metric in a supervised fashion to improve
the classification accuracy of the k-nearest neighbor rule [4].

The main intuition behind LMNN is to learn a pseudo met-
ric under which all data instances in the training set are sur-
rounded by at least k instances that share the same class label.
If this is achieved, the leave-one-out error (a special case of
cross validation) is minimized. Let the training data consist of
a data set

1 1{(,),..., (,)} d
n nD x y x y R C= ⊂ ×

 (1)

, where the set of possible class categories is

{1,..., }C c=
The algorithm learns a pseudo metric of the type

(,) () ()T
i j i j i jd x x x x M x x= − −

. (2)

For (.,.)d to be well defined, the matrix M needs to be pos-
itive semi-definite. The Euclidean metric is a special case,
where M is the identity matrix. This generalization is often
(falsely) referred to as Mahalanobis metric.

Figure 5 illustrates the effect of the metric under varying M.
The two circles show the set of points with equal distance to

the center ix . In the Euclidean case this set is a circle, whereas
under the modified (Mahalanobis) metric it becomes an ellip-
soid.

IJSER

http://www.ijser.org/
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Pseudometric
https://en.wikipedia.org/wiki/K-nearest_neighbor
https://en.wikipedia.org/wiki/Semidefinite_programming
https://en.wikipedia.org/wiki/Convex_optimization
https://en.wikipedia.org/wiki/Convex_optimization
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/K-nearest_neighbor
https://en.wikipedia.org/wiki/Metric_%28mathematics%29
https://en.wikipedia.org/wiki/Pseudometric
https://en.wikipedia.org/wiki/Pseudometric
https://en.wikipedia.org/w/index.php?title=Leave-one-out&action=edit&redlink=1
https://en.wikipedia.org/wiki/Cross_validation
https://en.wikipedia.org/wiki/Pseudometric
https://en.wikipedia.org/wiki/Positive_semi-definite
https://en.wikipedia.org/wiki/Positive_semi-definite
https://en.wikipedia.org/wiki/Mahalanobis_metric
https://en.wikipedia.org/wiki/Ellipsoid
https://en.wikipedia.org/wiki/Ellipsoid

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 16
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Fig. 5. Schematic illustration of LMNN.

The algorithm distinguishes between two types of special da-
ta points: target neighbors and impostors.

3.4 Target Neighbors
Target neighbors are selected before learning. Each instance

ix has exactly k different target neighbors within D, which all

shares the same class label iy . The target neighbors are the
data points that should become nearest neighbors under the
learned metric. Let us denote the set of target neighbors for a

data point ix as iN .

3.5 Impostors

An impostor of a data point ix is another data point ix with

a different class label (i.e. i jy y≠
) which is one of the k

nearest neighbors of ix . During learning the algorithm tries to
minimize the number of impostors for all data instances in the
training set.

Large Margin Nearest Neighbors should optimize the ma-

trix M. The objective is twofold: For every data point ix , the
target neighbors should be close and the impostors should be
far away. Figure 3 shows the effect of such an optimization on
an illustrative example. The learned metric causes the input

vector ix to be surrounded by training instances of the same
class. If it was a test point, it would be classified correctly un-

der the 3k = nearest neighbor rule.
The first optimization goal is achieved by minimizing the

average distance between instances and their target neighbors

,
(,)

i

i j
i j N

d x x
∈
∑

 (3)
The second goal is achieved by constraining impostors

ix to be one unit further away than target neighbors ix (and

therefore pushing them out of the local neighborhood of ix).
The resulting inequality constraint can be stated as:

, , ,
(,) 1 (,)

i l i

i j i l ijl

i j N l y y
d x x d x x ξ
∀ ∈ ≠

+ ≤ +

 (4)
The margin of exactly one unit fixes the scale of the matrix

M. Any alternative choice 0c > would result in a rescaling of

M by a factor of

1
c .

The final optimization problem becomes:

, , ,
(,)min

i

i j ijl
M i j N i j l

d x x ξ
∈

+∑ ∑

 (5)
, , ,i l ii j N l y y∀ ∈ ≠

(,) 1 (,)i j i l ijld x x d x x ξ+ ≤ +

 (6)

0ijlξ ≥ , 0M ≥

Here the slack variables ijlξ
 absorb the amount of viola-

tions of the impostor constraints. Their overall sum is mini-
mized. The last constraint ensures that M is positive semi-
definite. The optimization problem is an instance of semi defi-
nite programming (SDP). Although SDPs tend to suffer from
high computational complexity, this particular SDP instance
can be solved very efficiently due to the underlying geometric
properties of the problem. In particular, most impostor con-
straints are naturally satisfied and do not need to be enforced
during runtime. A particularly well suited solver technique is
the working set method, which keeps a small set of constraints
that are actively enforced and monitors the remaining (likely
satisfied) constraints only occasionally to ensure correct-
ness[5].

4. PROPOSED METHOD:
Our proposed algorithm has overall structure in figure 6.

IDS 1 IDS 2 IDS M

Voting

KDD dataset

Fig. 6.

IJSER

http://www.ijser.org/
https://en.wikipedia.org/wiki/File:Lmnn.png
https://en.wikipedia.org/wiki/Slack_variable
https://en.wikipedia.org/wiki/Positive_semi-definite
https://en.wikipedia.org/wiki/Positive_semi-definite
https://en.wikipedia.org/wiki/Semidefinite_programming
https://en.wikipedia.org/wiki/Semidefinite_programming
http://en.wikipedia.org/wiki/Working_set
https://en.wikipedia.org/wiki/File:Lmnn.png�

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 17
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

The KDD data set are passed to each intrusion detection
system and voting algorithm is used to make decision based
on each IDS system result. Each IDS has same structure that
we will explain in next section.

IDS has two phases: The train phase and test phase. In train
phase, we sample from train data frequently and in each sam-
pling, we change the selection probability of samples. Figure 7
illustrates the training phase.

KDD train
data

Sampling
with equal
probability

IDS 1

Sampling with
non equal
probability

IDS 2

Sampling with
non equal
probability

IDS N

Fig. 7.

If 1 2(, ,...,)nD d d d= and 1 2(, ,...,)kS s s s= were the
training set and samples set respectively, at the first step, each

sample has equal probability

1
n . We sample k samples from

train data and pass them to metric learner 1. Then we learn the
learner and at the next step we decrement the probability of
correctly classified samples and increase incorrectly classified

samples. If the learner has C correctly classified samples and
I error samples, the increment and decrement of probabilities
are as follow:

If C samples were classified correctly, its probability reduced
by multiplying it by factorα . So:

1t t
c cP Pα −= 0 , 1α β< < (7)

Where
n

cP is the probability of correctly classified sample in
time t. So, total probability of correctly classified samples will

be
1t

cC Pα −

.
β percent of remaining probability will be assigned to incor-
rectly classified samples. The amount of incorrectly classified

samples will be ()k C− . So,

1(1)
()

t t
i cP C P

k C
β α −= −
− (8)

Where
t

iP is the probability of each error samples.

The remaining samples (n k−) will have the probability:

1(1) (1)
()

t t
cP C P

n k
β α −−

= −
− (9)

Where
tP is the probability of deselected samples.

This procedure will be continued until Nth learner is trained.
Each IDS will predict the label of each sample as attack

connection or normal connection with some certainty. In the
voting part of figure 6, we use genetic algorithm to make final
decision. As you see in figure 8, we assign a weight to each
IDS result.

IDS 1

IDS 2

IDS 3

IDS M

i iw p∑ P

Fig. 8.

We use genetic algorithm to find optimum weights for voting.
The details of genetic algorithm are as follow:

4.1 Population size:
We can start the GA with G=1000 population size.

4.2 Chromosome:

A chromosome is a binary sequence of weights like figure 9.

1b 2b 3b 4b 5b 6b 7b 8b 1b 2b 3b 4b 5b 6b 7b 8b

1w Mw
Fig. 9.

Each iw is a signed float number with two bits for decimal
part.

4.3 Fitness function:

Fitness function is the classification accuracy of train samples.

n eFitness
n
−

=
 (10)

e is the error samples count.

4.4 New population generation:
The selection of parent chromosome is based on fitness

function and roulette wheel selection algorithm. The cross
over algorithm is two points crossover algorithm so that cross
over points are selected randomly on chromosomes. The mu-
tation is done by toggling a random bit of chromosome.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 8, August-2013 18
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

4.5 Termination condition:
The algorithm will end when the error rate reaches under

the user defined threshold T or the epochs of iteration reaches
to predefined value of epochs.

The test phase is simple. We pass the new test data to the
system of figure 6 and based on weighted voting we can dis-
tinguish that the connection is attack or not.

5. ADVANTAGE AND DISADVANTAGES:

5.1 Advantages

• Sequential manner with unequal subsampling method will
help the classifier to scatter each IDS on feature space so
that each IDS be expert in own partition of feature space.

• Boosted property of proposed method will increase the
accuracy of classifier because if one classifier fails to classi-
fy some data, the next classifiers can be subsidiary of pre-
vious classifiers.

• This method tries to find a suitable distance metric instead
of Euclidian distance metric.

• The aggregation of each classifier results is done by GA
because GA finds suitable near optimal solution for that.

• It can adaptively add an IDS when some abnormal behav-
ior exceed some predefined threshold in the partition of
abnormal behavior. So it can periodically extend itself by
retraining in a period of time.

5.2 Disadvantages:

• The algorithm has some constants (α , β , k) so that we
cannot set the optimal value of them. The optimal value of
these parameters can change in various train data sets.

• We cannot tell the best number of IDSs.

• It is not real time in train phase.

REFERENCES
[1] H. Holland, "Adaptation in natural and artificial systems: An Intro-

ductory Analysis with Applications to Biology, Control, and Artifi-
cial Intelligence", The MIT Press, 1992.

[2] Li, W. “A Genetic Algorithm Approach to Network Intrusion Detec-
tion”. http://www.giac.org/practical/GSEC/Wei_Li_GSEC.pdf.
Accessed January 2005

[3] Weinberger, K. Q.; Blitzer J. C., Saul L. K. (2006). "Distance Metric
Learning for Large Margin Nearest Neighbor Classification". Ad-
vances in Neural Information Processing Systems 18 (NIPS): 1473–
1480.

[4] Weinberger, K. Q.; Saul L. K. (2009). "Distance Metric Learning for
Large Margin Classification". Journal of Machine Learning Research
10: 207–244.

[5] Kumar, M.P.; Torr P.H.S., Zisserman A. (2007). "An invariant large
margin nearest neighbour classifier". IEEE 11th International Confer-
ence on Computer Vision (ICCV), 2007: 1–8.

 IJSER

http://www.ijser.org/
http://www.giac.org/practical/GSEC/Wei_Li_GSEC.pdf.%20Accessed%20January%202005
http://www.giac.org/practical/GSEC/Wei_Li_GSEC.pdf.%20Accessed%20January%202005
http://books.nips.cc/papers/files/nips18/NIPS2005_0265.pdf
http://books.nips.cc/papers/files/nips18/NIPS2005_0265.pdf
http://www.jmlr.org/papers/volume10/weinberger09a/weinberger09a.pdf
http://www.jmlr.org/papers/volume10/weinberger09a/weinberger09a.pdf
https://en.wikipedia.org/wiki/Journal_of_Machine_Learning_Research
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4409041
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4409041

	1. Introduction
	2. Genetic Algorithm
	2.1 Parameters in Genetic Algorithm

	3. metric learning:
	3.1 Introduction
	3.2 Metric learning with example
	3.3 LMNN:
	3.4 Target Neighbors
	3.5 Impostors

	4. Proposed method:
	4.1 Population size:
	4.2 Chromosome:
	4.3 Fitness function:
	4.4 New population generation:
	4.5 Termination condition:

	5. Advantage and disadvantages:
	5.1 Advantages
	5.2 Disadvantages:

	References

